Expect the Unexpected: Harnessing Sentence Completion for Sarcasm Detection

نویسندگان

  • Aditya Joshi
  • Samarth Agrawal
  • Pushpak Bhattacharyya
  • Mark James Carman
چکیده

The trigram ‘I love being’ is expected to be followed by positive words such as ‘happy’. In a sarcastic sentence, however, the word ‘ignored’ may be observed. The expected and the observed words are, thus, incongruous. We model sarcasm detection as the task of detecting incongruity between an observed and an expected word. In order to obtain the expected word, we use Context2Vec, a sentence completion library based on Bidirectional LSTM. However, since the exact word where such an incongruity occurs may not be known in advance, we present two approaches: an Allwords approach (which consults sentence completion for every content word) and an Incongruous words-only approach (which consults sentence completion for the 50% most incongruous content words). The approaches outperform reported values for tweets but not for discussion forum posts. This is likely to be because of redundant consultation of sentence completion for discussion forum posts. Therefore, we consider an oracle case where the exact incongruous word is manually labeled in a corpus reported in past work. In this case, the performance is higher than the all-words approach. This sets up the promise for using sentence completion for sarcasm detection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harnessing Cognitive Features for Sarcasm Detection

In this paper, we propose a novel mechanism for enriching the feature vector, for the task of sarcasm detection, with cognitive features extracted from eye-movement patterns of human readers. Sarcasm detection has been a challenging research problem, and its importance for NLP applications such as review summarization, dialog systems and sentiment analysis is well recognized. Sarcasm can often ...

متن کامل

Harnessing Context Incongruity for Sarcasm Detection

The relationship between context incongruity and sarcasm has been studied in linguistics. We present a computational system that harnesses context incongruity as a basis for sarcasm detection. Our statistical sarcasm classifiers incorporate two kinds of incongruity features: explicit and implicit. We show the benefit of our incongruity features for two text forms tweets and discussion forum pos...

متن کامل

"Having 2 hours to write a paper is fun!": Detecting Sarcasm in Numerical Portions of Text

Sarcasm occurring due to the presence of numerical portions in text has been quoted as an error made by automatic sarcasm detection approaches in the past. We present a first study in detecting sarcasm in numbers, as in the case of the sentence ‘Love waking up at 4 am’. We analyze the challenges of the problem, and present Rulebased, Machine Learning and Deep Learning approaches to detect sarca...

متن کامل

Irony and Sarcasm: Corpus Generation and Analysis Using Crowdsourcing

The ability to reliably identify sarcasm and irony in text can improve the performance of many Natural Language Processing (NLP) systems including summarization, sentiment analysis, etc. The existing sarcasm detection systems have focused on identifying sarcasm on a sentence level or for a specific phrase. However, often it is impossible to identify a sentence containing sarcasm without knowing...

متن کامل

Neural substrates of sarcasm: a functional magnetic-resonance imaging study.

The understanding of sarcasm reflects a complex process, which involves recognizing the beliefs of the speaker. There is a clear association between deficits in mentalizing, which is the ability to understand other people's behavior in terms of their mental state, and the understanding of sarcasm in individuals with autistic spectrum disorders. This suggests that mentalizing is important in pra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017